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Abstract. We investigate the sequential cracking of thin brittle coatings attached adhesively to substrates.
The focus of our study are uniaxial tensile loading conditions, where we monitor the behavior in a con-
tinuous picture and the coating strength follows a two-parameter Weibull distribution. For fracture well
under way we derive an approximate analytical expression for the distribution of fragment lengths. We
recover that the distribution scales with the average fragment length 〈l〉 and that 〈l〉 is a power function
of the applied strain ε, i.e. 〈l〉 ∝ ε−κ, where κ depends on the distribution of the strength of the coating
and on the adhesive’s nonlinearity. Furthermore we compare our approximate analytical expression with
numerical solutions and with simulations’ findings.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
46.65.+g Random phenomena and media – 46.50.+a Fracture mechanics, fatigue and cracks

1 Introduction

Disorder aspects play a central role in failure phenomena
(which determine the strength properties of solids) and
render very complex the prediction of the resistance of
solids to stress. Thus, calculations of materials’ strength
based only on interatomic potentials lead to values which
are typically orders of magnitude larger than what is
observed [1]. This is due both to the probabilistic extreme-
value character of crack initiation and also to the multi-
scale nature of the phenomena accompanying crack prop-
agation. Crack nucleation and propagation are namely
determined by the microstructure of the materials under
investigation [2] and depend strongly on the samples’ past
history. On the other hand, breakage which arises as a con-
sequence of sequential processes, say in coatings under ten-
sile load [3–5] and in surface layers which desiccate [6–9],
leads to qualitatively similar patterns for vastly different
materials. This is a clear indication of the existence of
universality in fragmentation, which suggests that the pa-
rameters which govern sequential cracking are of restricted
number. The analysis of previous research relates these pa-
rameters to the disorder of the failure probabilities in the
coating [10–14] and to the law (linear or nonlinear [15,16])
which determines the stress transfer between coating and
support.

Several research groups have addressed in this decade
the problem of the interplay between disorder and elas-
ticity by using discrete models [12,17–19]; these are par-
ticularly suited to follow the sequential process of pattern
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formation in a quasi-microscopic way. On the other hand,
engineering mechanics descriptions use continuous prob-
abilistic pictures [20–24]. Here we will stress the connec-
tion between the two approaches, focusing mainly on the
Weibull distribution of probabilities of failure, which is re-
lated to one of the three possible stable asymptotic laws
for the distribution of extrema [25]. In so doing, we will
determine approximate solutions for the fragment length
distribution of the ensuing fracture patterns and will re-
cover the scaling of the mean fragment length as a function
of the applied strain, while extending previous results.

We now turn to the microscopic parameters governing
fragmentation and focus on uniaxial stress. Under such
stress the problem often simplifies, as shown by numer-
ical results [26] and by experiments [3–5]: one has then
a practically one-dimensional picture, in which series of
quasi-parallel cracks form perpendicular to the direction
of the stress. The condition under which such patterns ob-
tain depend on the length scales involved in the problem.
Thus in previous works [11,12,18,22] a correlation length
ξ was introduced, which is a measure of the load trans-
fer efficiency; it is defined as being that distance from the
border of a fragment at which the stress recovers a value
close to that which prevails well-inside a very large frag-
ment. The important role played by ξ was emphasized in
reference [22], where the special case of perfect plastic-
ity is discussed. Thus the relation between ξ and other
characteristic length scales of the system allows to dis-
tinguish between different fragmentation regimes. More-
over, ξ determines whether fragmentation under uniaxial
load proceeds in an effectively one-dimensional manner or
whether the process is truly two-dimensional. The first
case is realized in situations with weak disorder and also
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when the coating has the form of a narrow strip of width
W , such that W < ξ. For strong disorder and/or large W
the development of cracks after nucleation depends very
much on the material at hand: both strong disorder (scat-
ter along the crack’s path) and the proximity of other
growing cracks let the problem retain its two-dimensional
character. We concentrate in what follows only on effec-
tively 1-d situations and discuss analytical and numerical
approaches for determining the probability distributions
of fragment lengths.

This article is organized as follows: In Section 2 we
derive the stress distribution in a short fragment. In
Section 3 we discuss the failure probability in a fragment
and its connection to Weibull strength distributions. In
Section 4 we display the kinetic equation and derive ap-
proximate solutions for several distinct cases. Section 5 is
devoted to the comparison of our analytical and numeri-
cal solutions to the results obtained from simulations. The
paper closes with conclusions in Section 6.

2 Stress distribution in a small fragment

Several models in the physical literature on failure phe-
nomena start from mesoscopic lattice models [2], based
on networks consisting of springs [27]. The springs rep-
resenting the coating are assumed to be breakable, their
equilibrium length being leq. The nodes of the coating are
attached to the substrate via elastic (possibly nonlinear)
bonds (i.e. leaf springs). Now, as shown in reference [18],
the one-dimensional variant of this model is amenable to
an analytical solution. Reference [15] was devoted to the
investigation of the case in which the bonds between the
coating and the substrate behave nonlinearly. In the con-
tinuum limit the equations which describe the stress dis-
tribution go over into those of the shear-lag model, in-
troduced much earlier by Cox [28]. In what follows, we
discuss the situation in more detail and display (starting
from a continuous picture) the pertinent equations.

Consider thus a fragment of length l and of thickness
hc attached to a substrate via a (nonlinearly) elastic ad-
hesive layer of thickness ha. The substrate is subjected
to a uniaxial tensile loading, characterized by the applied
strain ε. For a thin planar coating the only component of
the stress of interest here is the one parallel to the load.
Then the condition that forces are in equilibrium reads
dσ/dy = τ/hc, where the y axis is parallel to the load,
σ(y) is the stress in the coating, and τ(y) is the shear
stress in the adhesive.

Similarly to the analysis of fragmentation in
references [4,15] we assume that the adhesive is nonlin-
early elastic and approximate the shear stress-strain rela-
tion through:

τ = Csgn(γ)|γ|m (1)

with positive parameters C and m. The shear strain γ
is given by γ = (uc − us)/ha, where uc and us denote
the displacement of the coating and of the substrate, re-
spectively. For a linearly elastic adhesive m = 1 holds,

and the factor C coincides with the shear modulus. In the
case of m < 1, equation (1) provides a rough approxima-
tion of strain-hardening plasticity response upon active
loading [29]. For m = 0 we deal with perfect plasticity,
cf. reference [22]. On the other hand, m > 1 describes
the increase of the modulus with strain, as often occurs in
elastomers.

For a linearly elastic coating σ = Ecduc/dy holds,
where Ec is the Young’s modulus of the coating. Inserting
σ = Ecduc/dy into the balance equation dσ/dy = τ/hc,
one obtains the following nonlinear second order differen-
tial equation for uc(y):

d2uc

dy2
= sgn(γ)

C

Echchma
|uc − us|m. (2)

If the effect of coating cracks on the deformation of the
substrate is negligible, then the strain everywhere in the
substrate is equal to the applied strain ε, and consequently
us is easily determined. Due to the symmetry of the prob-
lem, it suffices to consider only half of the fragment. Tak-
ing the origin of the y axis in the fragment center, one has
us = εy, and we obtain for y ≥ 0

d2uc

dy2
= − C

Echchma
(εy − uc)m. (3)

The boundary conditions are uc(0) = 0 and u′c(l/2) = 0.
For a fragment short with respect to the length of the

zone of stress transfer, l � ξ, the displacement of the
substrate exceeds by far that of the coating, i.e. εy � uc.
Neglecting uc on the rhs of equation (3), we obtain the
following stress distribution in the fragment:

σ(y) =
Cεmlm+1

2m+1(m+ 1)hchma

(
1−

∣∣∣∣2yl
∣∣∣∣m+1

)
. (4)

An analogous expression for the strain in the coating
has been found in the analysis of networks made out of
springs [15].

For the subsequent analysis, it is convenient to repre-
sent the stress distribution in the form σ = w0(ε)f(x, l),
with x ∈ [0, l]. Setting w0(ε) = Cεm/[2m+1(m + 1)hch

m
a ]

and y = x− l/2 leads to

f(x, l) = lm+1

(
1−

∣∣∣∣2xl − 1
∣∣∣∣m+1

)
. (5)

The shape of the stress distribution along the fragment
is given by the function f(x, l), which depends strongly
on the adhesive’s deformability, characterized by the pa-
rameter m. Figure 1 shows f(x, l) for l = 1 and several
m values. For m = 0 the function f(x, l) increases lin-
early from the fragment’s edges, while for m = 1 it is a
parabola. With increasing m the plateau in the middle of
the fragment gets more and more pronounced.

3 Probability of fragment failure

Coatings have defects, such as micropores and flaws, which
occur during the manufacturing process and which are
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Fig. 1. The function f(x, 1), see equation (5), plotted for m =
0, 1, 3 and 5; f(x, 1) is proportional to the stress in a fragment.
For m = 0 the function f(x, 1) consists of two straight parts,
for m = 1 it is a parabola. With increasing m the plateau in
the middle of the fragment gets more pronounced.

randomly distributed. Consequently, the strength of a
coating element is statistically distributed as well. In this
section we consider the failure of a layer under increas-
ing stress and assume that the coating’s strength follows
a two-parameter Weibull distribution. According to this
distribution, the probability of failure P (∆x, σ) of a coat-
ing element of length ∆x at stress σ is given by:

P (∆x, σ) = 1− exp
[
−∆x

(σ
ω

)α]
, (6)

where α and ω are the shape and the scale parameters.
The Weibull distribution [30] of continuum mechanics,

widely applied in the engineering literature for the de-
scription of the materials’ strength, corresponds in a lat-
tice model picture to a power function distribution for the
local breakdown thresholds, as used in references [15,18].
To recall this we consider an element of length ∆x, be-
ing part of a fragment which is small enough to allow to
view the forces and the displacements on it to be constant,
but large enough to contain a large number of breakable
subunits of length a, i.e. N = ∆x/a � 1. The element
will break when its first weakest subunit will break. In
the spring model of reference [18] a special case of the
cumulative probability distribution function of the local
breakdown strength σb has the form

P (σb) =
(σb

ω

)α
(7)

for 0 ≤ σb ≤ ω and P (σb) = 0 otherwise. In the nota-
tion of equation (37) of reference [18] (MSB) imin = 0,
α = αMSB + 1 and ω = WMSB. Hence the local break-
down strength is bounded. Assuming this form of the
spring model also here leads for the failure probability
PN (σ) of the fragment to PN (σ) = 1 − [1 − P (σ)]N =
1 − exp [N ln (1− P (σ))]. For N � 1 the typical break-
down value σ is small and the corresponding probabil-
ity distribution tends to the asymptotic form PN (σ) =
1− exp [−N(σ/ω)α] = 1− exp [−∆xσα/(aωα)], i.e. to the
Weibull form. Thus equation (7) used in the spring model

leads in the continuum to the Weibull-form, equation (6).
We note here that the Weibull distribution is one of the
three possible stable asymptotic laws for the distribution
of extrema, namely the one which is always attained when
the values of σb are bounded [25].

The form of P (∆x, σ), equation (6), is very advan-
tageous and allows for a simpler analytical approach
to fragmentation than was possible in the general case
of equation (37) of reference [18], case considered in
references [12,18]. For a stress distribution in the form
σ(x) = w0(ε)f(x, l), it is convenient to define the loading
parameter s so that s = (w0(ε)/ω)α. Moreover we intro-
duce the coating stress parameter t = sfα(x, l). Then the
probability that a coating element of length ∆x fails at t∗
having survived t is

P (∆x, t∗|t) = 1− exp [−(t∗ − t)∆x]. (8)

The probability P−(l, s∗|s) that a fragment of length l
fails under the load s∗, having survived s, is related to the
probability that each of the coating elements survives by:

P−(l, s∗|s) = 1−
∏
i

[1− P (∆xi, t∗i |ti)]

= 1− exp

[
−
∑
i

(t∗i − ti)∆xi

]
(9)

which reads in the continuum limit:

P−(l, s∗|s) = 1− exp

[
−(s∗ − s)

∫ l

0

fα(x, l) dx

]
. (10)

Hence the probability density p−(l, s) for a fragment of
length l to fail under a load increment ds, while having
survived s, is given by:

p−(l, s) =
∂P−(l, s∗|s)

∂s∗

∣∣∣∣
s∗=s

=
∫ l

0

fα(x, l) dx. (11)

Now consider the probability P+(x, t∗|t) of a failure in
the interval x to x+∆x, again under the load s∗ having
survived s. This probability equals to the probability that
the coating element in question fails times the probability
that there are no failures in the rest of the fragment:

P+(x, t∗|t) =
(

1− exp
[
− (t∗ − t)∆x

])
× exp

[
−
∫ x

0

(t∗ − t) dx−
∫ l

x+∆x

(t∗ − t) dx

]
. (12)

For very small ∆x, one can expand the first exponential
term on the rhs of equation (12). This yields

P+(x, s∗|s) = dx(s∗ − s)fα(x, l)

× exp

[
−(s∗ − s)

∫ l

0

fα(x, l) dx

]
. (13)
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Therefore the probability density p+(x, l, s) for a fragment
of length l to fail between x and x + dx upon a load
increment ds having survived s is:

p+(x, l, s) dx =
∂P+(x, s∗|s)

∂s∗

∣∣∣∣
s∗=s

= fα(x, l) dx. (14)

Since p−(l, s) is the density of the probability for the
whole fragment to fail and p+(x, l, s) denotes the density
of the probability to fail at some point x, the function
p−(l, s) follows from p+(x, l, s) by integration: p−(l, s) =∫ l

0 p+(x, l, s) dx.
It should be noted that the obtained probability densi-

ties equations (11) and (14) are strictly exact only under
particular loading conditions, namely if a fragment of a
given length undergoes without failure a monotonic in-
crease of the load from 0 to s∗. This condition is strictly
met only for the very first fragment, since the other frag-
ments are themselves the result of previous fragmenta-
tions and therefore have a much richer, in general, non-
monotonic loading history, which is not accounted for in
equations (11) and (14). This might somewhat overesti-
mate the failure probabilities, especially for fragment ele-
ments located close to fragment edges.

4 Fragmentation equation and its solutions

With increasing applied strain ε the number of fragments
of a given length changes, since fragments can break
and new fragments are created. The fragmentation ki-
netics is determined by the balance between fragment
generation and breakup. As is customary in fragmenta-
tion phenomena [21,31–33] and in related physical situ-
ations such as the creation of contacts in light fibrous
materials [34] one considers an equation for the global
process. In this study we assume that the following frag-
mentation equation for the number density of fragments
n(l, s) holds:

∂n(l, s)
∂s

= −p−(l, s)n(l, s) + 2
∫ ∞
l

p+(l, x, s)n(x, s) dx.

(15)

The change ∂n/∂s of the function n(l, s) results from the
breakup and the generation of fragments. The first term
on the rhs of equation (15) considers that fragments of
length l break with a certain probability. The second term
takes into account that fragments whose fragment length
x is larger than l can break at the position l or x− l. The
factor 2 in equation (15) results from the fact that the
probability to fail at the position l equals the probability
to fail at the position x − l. Note that in the integral
on the rhs of equation (15) l and x have been changed
in comparison with equation (14). In equation (15) we
assume implicitly that breakage events create only two
new pieces out of an old one. Inserting equations (5, 11, 14)

into equation (15) yields:

∂n(l, s)
∂s

= −n(l, s)lα(m+1)+1

∫ 1

0

(
1− |1− 2t|m+1

)α
dt

+ 2
∫ ∞
l

n(x, s)xα(m+1)
(

1− |1− 2l/x|m+1
)α

dx. (16)

Obviously, due to the kernel of the integral, equation (16)
is not easy to handle. In this article, we make use of
two methods to determine approximate solutions to this
integro-differential equation. First, we derive analytical
expressions based on a rough approximation of the ker-
nel. Second, we solve numerically the kinetic equation for
the special casem = 1 and α integer. In both cases we con-
centrate on the advanced stages of fragmentation, where
the initial condition n(l, 0) = δ(l −N) for an intact coat-
ing of length N does not influence the fragment length
distribution anymore.

4.1 Approximate analytical solution

A rough simplification of the kinetic equation (16) can be
achieved by neglecting the contribution of fragments of
length around l to the generation of fragments of length
l. We then expand the term in brackets of the second
summand on the rhs of equation (16) for x � 2l and
retain the first-order term only, i.e. 1 − |1 − 2l/x|m+1 ≈
2(m + 1)l/x. Inserting this expression into equation (16)
leads to
∂n(l, s)
∂s

= −n(l, s)Alα(m+1)+1 +Blα
∫ ∞
l

n(x, s)xαm dx,

(17)

where we introduced the constants A =
∫ 1

0

(
1−

|1−2t|m+1
)α dt and B = 2α+1(m+1)α. As can be readily

verified by insertion, the solution of equation (17) is:

n(l, s) = sclα exp
(
−Aslλ

)
(18)

with λ = α(m + 1) + 1 and c = B/(Aλ). From this we
obtain the average fragment length 〈l〉:

〈l〉 =

∞∫
0

l n(l, s) dl

∞∫
0

n(l, s) dl
=
Γ [(α+ 2)/λ]
Γ [(α+ 1)/λ]

(As)−1/λ, (19)

where Γ (x) denotes the Gamma function. Inserting s =
(w0(ε)/ω)α into equation (19), we find that the mean
fragment length scales with the applied strain ε as 〈l〉 ∝
ε−αm/[α(m+1)+1], which result has been also derived in the
context of spring-networks, see reference [15]. As also dis-
cussed in this article, the scaling of 〈l〉 with ε is well sup-
ported by simulations. In order to obtain the fragment
length distribution density ρ(l, s), we have to normalize
the solution equation (18). Hence we have

ρ(l, s) =
n(l, s)

∞∫
0

n(l, s) dl
=
λlα(As)(α+1)/λ

Γ [(α+ 1)/λ]
exp

(
−Aslλ

)
.

(20)
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Numerical investigations [18] have shown that in the later
stages the fragment length distribution keeps its shape
when plotted as a function of ζ = l/〈l〉, i.e. it fulfills the
relation ρ(l, s) = 〈l〉−1p(ζ), where p(ζ) does not depend on
s. This behaviour indicates that fragmentation proceeds
universally. Thus experimental results, when plotted as a
function of ζ, should be depicted by p(ζ), on which we now
focus. The distribution function equation (20) also fulfills
the relation ρ(l, s) = 〈l〉−1p(ζ) with

p(ζ) = k1k
α+1
2 ζα exp

[
−(k2ζ)λ

]
, (21)

where we set ζ = l/〈l〉. The constants k1 and k2 only de-
pend on the Weibull shape parameter α and the nonlin-
earity parameter m, and are given by k1 = λ/Γ [(α+1)/λ]
and k2 = Γ [(α+ 2)/λ]/Γ [(α+ 1)/λ].

We close the section by considering the limiting case
m → ∞. For m very large the probability density
p+(x, l, s) ceases to depend on the position x of the failure,
as follows from equations (5) and (14). Hence p+(x, l, s) is
approximately given by

p+(x, l, s) dx =
dx
l

∫ l

0

fα(x̃, l) dx̃. (22)

Then the fragmentation equation (15) reads

∂n(l, s)
∂s

= −n(l, s)Alλ + 2A
∫ ∞
l

n(x, s)xλ−1 dx. (23)

The solution of equation (23) is n(l, s) = s2/λ exp (−Aslλ),
which implies for the average fragment length:

〈l〉 =
Γ (2/λ)
Γ (1/λ)

(As)−1/λ. (24)

Consequently, the fragment length distribution p(ζ) with
ζ = l/〈l〉 is given by

p(ζ) = k3k4 exp
[
−(k4ζ)λ

]
, (25)

where the constants k3 and k4 are defined by k3 =
λ/Γ (1/λ) and k4 = Γ (2/λ)/Γ (1/λ). For m very large
equation (25) simplifies to

p(ζ) =
λ exp [−(ζ/2)λ]

2Γ (1/λ)
· (26)

In the limit m → ∞ equation (26) leads to p(ζ) =
θ(2 − ζ)/2, where θ(x) denotes the Heaviside function.
For m→∞ the peak of the distribution p(ζ) disappears.
This is due to the fact that in the limit m→∞ the shape
of the stress distribution attains a large plateau. Hence
cracks can occur at any position within the fragment with
the same probability.

4.2 Numerical integration

In this section we present a numerical solution for the
rate equation (16) in the special case m = 1 (linear

stress transfer) and for integer α values. The studies
of references [5,12,15,18] and the previous section have
shown that in advanced stages of fragmentation the aver-
age fragment length scales with the applied strain. In fact
the whole fragment length distribution ρ(l, s) obeys a uni-
versal form, see references [12,18] and also equation (21)
here, since p(ζ) = 〈l〉ρ(l, s) with ζ = l/〈l〉 holds. These
observations suggest another approach for solving the ki-
netic equation (16). Knowing that n(l, s) attains in ad-
vanced fragmentation stages the form p(ζ) = 〈l〉ρ(l, s),
we look for a solution of equation (16) using the scal-
ing Ansatz n(l, s) = sc1ϕ(sc2 l), where ϕ(z) is a function
of z = sc2 l only. One may note that the previously ob-
tained approximate solution, equation (18), also has this
scaling form, with c1 = (B/A − α)/λ, c2 = 1/λ and
ϕ(z) = zα exp (−Azλ). The Ansatz n(l, s) = sc1ϕ(sc2 l)
allows now to derive an ordinary differential equation
from equation (16). In line with related studies of rate
equations [31,32,34] we look for an asymptotic solution.

Introducing the variable z = sc2 l, we find ∂n/∂s =
c1s

c1−1ϕ(z) + c2s
c1+c2−1lϕ′(z), where the prime denotes

differentiation with respect to z. We first consider the case
m = 1 and α = 1. Inserting n(l, s) = sc1ϕ(sc2 l) into the
kinetic equation (16) yields then:

3c1s3c2−1

z
ϕ(z) + 3c2s3c2−1ϕ′(z) = −2z2ϕ(z)

+ 24
∫ ∞
z

ϕ(z̃)(z̃ − z) dz̃. (27)

The scaling Ansatz implies that the lhs of equation (27)
is independent of s. Hence we find that c2 = 1/3, cor-
responding to c2 = 1/λ = 1/[α(m + 1) + 1] for m = 1
and α = 1. Now the sum of the lengths of all fragments
equals the length of the initial segment:

∫∞
0 l n(l, s) dl =

sc1−2c2
∫∞

0
z ϕ(z) dz = const. Therefore c1 is given by

c1 = 2c2 = 2/3. Consequently, equation (27) results in

2ϕ(z)
z

+ ϕ′(z) = −2z2ϕ(z) + 24
∫ ∞
z

ϕ(z̃)(z̃ − z) dz̃.

(28)

Differentiating equation (28) with respect to z and defin-

ing a new function Φ(z) through Φ(z) = −
∞∫
z

ϕ(z̃) dz̃ leads

to the following linear third-order ordinary differential
equation:

Φ′′′(z) = 24Φ(z) + Φ′(z)
(

2
z2
− 4z

)
− Φ′′(z)

(
2
z

+ 2z2

)
.

(29)

Because of the normalisation of φ, we have the boundary
condition Φ(0) = −1. Furthermore both Φ′(0) = 0 and
Φ(∞) = 0 hold, the first since ϕ(0) = 0 and the second by
the definition of Φ. We note that in the limit z → 0 the
singularities on the rhs of equation (29) vanish, so that we
have Φ′′′(0) = 12Φ(0).

We have found the solution of equation (29) nu-
merically using the ordinary differential equation solver
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COLNEW [35]. Here we solved equation (29) in the fi-
nite interval [0, zb] and increased zb until the results were
independent of zb. If Φ(z) is known, the average frag-
ment length 〈l〉 and the fragment length distribution p(ζ)
with ζ = l/〈l〉 follow as 〈l〉 = s−1/3

∫∞
0 z ϕ(z) dz and

p(ζ) = ϕ(z)
∫∞

0
z̃ ϕ(z̃) dz̃. Clearly, 〈l〉 decays as s−1/λ, as

already derived in references [12,15] and in the previous
section.

The procedure which has been outlined here for α = 1
can be generalized to all integer α values. Introducing the
function

Φn(z) =
(−1)n

Γ (n− 1)

∫ ∞
z

(z̃ − z)n−1ϕ(z̃) dz̃ (30)

for n ≥ 1 and setting Φ0(z) ≡ ϕ(z), we obtain by inserting
n(l, s) = sc1ϕ(sc2 l) into equation (16):

ϕ′′(z) = ϕ(z)
[
−2(α+ 1)(2α+ 1)z2α−1

3
+

2α
z2

]
+ ϕ′(z)

[
−2(2α+ 1)z2α

3
+
α− 3
z

]
+ (−1)α−1α!(2α+ 1)22α+1zα−1Φα(z). (31)

Because of ϕ(i)(z) = Φ
(n+i)
n (z), equation (31) is a lin-

ear ordinary differential equation for Φα(z). The bound-
ary conditions are Φ

(k)
α (∞) = 0 for 0 ≤ k ≤ α − 1

and Φ
(α−1)
α (0) = −1, as well as Φ

(α)
α (0) = 0. Again,

equation (31) can be solved numerically using COLNEW.

5 Comparison with simulations

In this section we compare the analytical and numerical
results for 〈l〉 and p(ζ) (based on Eq. (15) and the pre-
vious discussion) with the outcome of stochastic simula-
tions. To be able to achieve quickly the asymptotic situa-
tion in the simulations (which need on the one hand large
systems in order to avoid discreteness and finite-size ef-
fects, and on the other hand many realizations due to the
extreme-value character of the breakage process) we apply
a hottest-bond algorithm which uses directly equation (4).
This scheme turns out to be effective. At the beginning of
the simulation, each spring of the coating is attributed
a random strength according to equation (7). Then the
stress in each segment is determined using equation (4);
the overall shape of the stress distribution in each segment
is assumed not to change with increasing load. Thus the
“hottest” bond, i.e. the one with lowest strength to stress
ratio, is the next one to break. Because of the scaling form
of equation (4) with respect to ε, the failure strain is easily
determined. The spring which breaks is removed from the
system irreversibly and two new segments are created. In
order to obtain the fragment length distribution, this pro-
cedure is iterated for 10 000 breakage events in a system
of 2× 106 springs.

Figure 2 shows the results for the mean fragment
length 〈l〉 for linear stress transfer (m = 1) and for
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Fig. 2. The average fragment length 〈l〉 vs. applied strain ε
in the case of linear stress transfer (m = 1) plotted for (a)
α = 1, (b) α = 2 and (c) α = 3. The circles are the results
of stochastic simulations with N = 2 × 106 and ω = 1 after
averaging over 10 realizations. The solid lines correspond to
equation (19).

α = 1, 2, 3 in a double-logarithmic representation. In
such a representation scaling relations are straight lines.
In Figure 2 the solid lines give the analytical solution,
equation (19), and the circles depict the simulation data
after averaging over 10 realizations. We emphasize that
the strain ε in Figure 2 relates to the substrate. The
strain in the coating is much smaller than ε. This assump-
tion has been made to obtain the approximate solution
of equation (3). Therefore a large strain in the substrate
does not imply a large (with respect to elasticity limit)
strain in the coating, and the large range of substrate
strain does not violate the assumption of linear elastic
coating behaviour. The simulations were performed up
to a very large strain range in order to exemplify more
clearly the asymptotic behaviour of the scaling relation
for the average fragment length. From Figure 2 we infer
the good agreement between the simulated mean fragment
lengths and the analytical solution, equation (19), of the
form 〈l〉 = cε−κ; note that not only the slopes, but also the
values of c are in agreement. We remark that equation (19)
turns out to be valid also for nonlinear stress transfer; the
scaling of 〈l〉 with ε has been already demonstrated for
values of m larger than one in reference [15], and an addi-
tional investigation for m = 3 and m = 5 (which we do not
report here) shows that also the prefactor of equation (19)
is supported by the simulations.

Figure 3 shows the fragment length distribution for
the same parameters as in Figure 2. The circles are the
simulation data. The solid line displays the analytical so-
lution equation (21) and the dashed line is obtained from
the numerical solution of equation (31). The distribution
p(ζ), with ζ = l/〈l〉, becomes more narrow for increasing
α, since larger α values imply less scatter in the coating’s
strength. Consequently, for large α the fragments tend to
break in their middle, which implies a narrow fragment
length distribution. Comparing the simulations with the
analytical result equation (21) shows that the agreement is
reasonable, but the deviations increase with increasing α.
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Fig. 3. The fragment length distribution p(ζ) with ζ = l/〈l〉 for m = 1 and for (a) α = 1, (b) α = 2, (c) α = 3. The circles are
the results of simulations with N = 2 × 106 and ω = 1. The dashed lines display p(ζ) derived from the numerical solution of
equation (31), and the solid lines correspond to equation (21).

This trend can be understood in terms of the approxi-
mation 1 − |1 − 2l/x|2 ≈ 4l/x involved in going from
equation (16) to equation (17); this approximation is quite
rough for x ≈ 2l and its usefulness hence decreases when
(as is the case for larger α) more and more segments break
close to their middle. In Figure 3 we also display the re-
sults of the numerical integration of equation (31) used to
obtain p(ζ) (dashed lines in Figs. 3a-c). The difference be-
tween the numerical approach based on equation (31) and
the stochastic simulations is possibly due to the fact that
the rate equation equation (16) does not consider the non-
monotonic loading history of each element: In the simula-
tions the weakest bonds disappear first from the system.
This aspect is not taken into account in the fragmenta-
tion equation, based on a history-independent probability
of failure.

Let us now discuss the case m 6= 1, i.e. nonlinear stress
transfer. First we analyze the case m� 1, that of nearly
perfect plasticity. We take m = 0.05 and α = 1, for which
we plot in Figure 4 the fragment length distribution; in the
Figure the circles give the simulation results and the solid
line the analytical solution equation (21). Now for m =
0.05 the approximation 1 − |1 − 2l/x|m+1 ≈ 2(m+ 1)l/x
is quite adequate for x � 2l. Hence one expects a satis-
factory agreement between simulations and equation (21).
Indeed in Figure 4, the difference between the simulation
data and the analytical solution is small.

0 0.5 1 1.5 2 2.5 3
ζ

0.0

0.5

1.0

p(
ζ)

Simulation
Eq. (21)

Fig. 4. The function p(ζ) with ζ = l/〈l〉 for m = 0.05 and
α = 1. The agreement between the theoretical curve equa-
tion (21) (solid line) and the results of the simulations (circles)
is satisfactory, see text for details.

Continuing the study of nonlinear stress transfer we
turn now to cases where m > 1 holds. We plot in Figure 5
the fragment length distribution p(ζ), as obtained through
simulations for α = 1 and m = 3, 7 and 31. Comparing
the fragment length distributions for different m it turns
out that with increasing m the maxima of the distribu-
tion decrease and that the distributions “flatten”. This
can be visualized with help of the analytical approximate
solution of the kinetic equation for m very large, namely
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Fig. 5. The fragment length distribution p(ζ) with ζ = l/〈l〉
for m = 3, 7 and 31. The parameters are α = 1, ω = 1 and
N = 2 × 106. The solid line represents the analytical solution
equation (25) for m = 31.

equation (25). In Figure 5 equation (25) is also plotted
for m = 31 as a full line. It turns out that equation (25),
which shows an almost perfect plateau behaviour, repro-
duces the simulation findings for m = 31 very well.

6 Conclusions

In this study we have modelled fragmentation in brittle
coatings under uniaxial stress. We have utilized both an-
alytical and also numerical methods. In the analysis we
started from a rate equation for the fragmentation using
a two-parameter Weibull distribution for the local frac-
ture strength. We have investigated both linear and also
nonlinear shear stresses between coating and substrate,
and focused especially on the scaling situation in advanced
stages of fragmentation. We derived an approximate solu-
tion for the fragmentation equation, which leads to an-
alytical expressions for the fragment length distribution
and its mean value. These findings were then confronted
with numerical solutions of the fragmentation equation,
as well as to simulations of the process. The dependence
of the analytically determined mean fragment length on
the applied strain and the fragment length distribution
are found to agree with the simulations, and we discussed
the achieved accuracy as a function of the parameters in-
volved. The numerical solutions of the rate equation are
also in agreement with the simulation data.
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